Add like
Add dislike
Add to saved papers

Reduction of p53 by knockdown of the UGT1 locus in colon epithelial cells causes an increase in tumorigenesis.

BACKGROUND & AIMS: The UDP-glucuronosyltransferases (UGTs) are part of the cells machinery that protects the tissues from a toxicant insult by environmental and host cell metabolites. We have investigated the mechanism behind tumor growth and UGT repression.

METHODS: We initially silenced the Ugt1 locus in human colon cell lines and investigated markers and responses linked to p53 activation. To examine the role of the Ugt1 locus in p53-directed apoptosis and tumorigenesis, experiments were conducted to induce acute colon inflammation and chemical induced colon cancer in mice where we have selectively deleted the Ugt1 locus in the intestinal epithelial cells (Ugt1(ΔIEC) mice).

RESULTS: Knockdown of the UGT1A proteins by RNAi in human colon cancer cells and knockout of the Ugt1 locus in intestinal crypt stem cells reduces phosphorylated p53 activation and compromises the ability of p53 to control apoptosis. Targeted deletion of intestinal Ugt1 expression in Ugt1(ΔIEC) mice represses colon inflammation-induced p53 production and pro-apoptotic protein activation. When we induced colon cancer, the size and number of the tumors were significantly greater in the Ugt1(ΔIEC) mice when compared to wild type mice. Furthermore, analysis of endoplasmic reticulum (ER) stress-related markers indicated that lack of UGT1A expression causes higher ER stress in intestinal epithelial cells and tissue, which may account for the lower expression of p53.

CONCLUSIONS: Our results demonstrate that UGT1A expression is required to maintain and sustain p53 activation in stress-induced colon epithelial cells and has a significant impact on p53-mediated apoptosis and tumor suppression, thus protecting the colon tissue from neoplastic transformation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app