JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Histone Chaperone FACT Contributes to DNA Replication-Coupled Nucleosome Assembly.

Cell Reports 2016 Februrary 10
DNA replication-coupled (RC) nucleosome assembly is mediated by histone chaperones and is fundamental for epigenetic inheritance and maintenance of genomic integrity. The mechanisms that promote this process are only partially understood. Here, we show that the histone chaperone FACT (facilitates chromatin transactions), consisting of Spt16 and Pob3, promotes newly synthesized histone H3-H4 deposition. We describe an allele of Spt16 (spt16-m) that has a defect in binding to H3-H4 and impairs their deposition onto DNA. Consistent with a direct role for FACT in RC nucleosome assembly, spt16-m displays synthetic defects with other histone chaperones associated with this process, CAF-1 and Rtt106. Importantly, we show that FACT physically associates with Rtt106 and that the acetylation of H3K56, a mark on newly synthesized H3, modulates this interaction. Therefore, FACT collaborates with CAF-1 and Rtt106 in RC nucleosome assembly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app