JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

ATP-Evoked Intracellular Ca²⁺ Signaling of Different Supporting Cells in the Hearing Mouse Hemicochlea.

Neurochemical Research 2016 Februrary
Hearing and its protection is regulated by ATP-evoked Ca(2+) signaling in the supporting cells of the organ of Corti, however, the unique anatomy of the cochlea hampers observing these mechanisms. For the first time, we have performed functional ratiometric Ca(2+) imaging (fura-2) in three different supporting cell types in the hemicochlea preparation of hearing mice to measure purinergic receptor-mediated Ca(2+) signaling in pillar, Deiters' and Hensen's cells. Their resting [Ca(2+)]i was determined and compared in the same type of preparation. ATP evoked reversible, repeatable and dose-dependent Ca(2+) transients in all three cell types, showing desensitization. Inhibiting the Ca(2+) signaling of the ionotropic P2X (omission of extracellular Ca(2+)) and metabotropic P2Y purinergic receptors (depletion of intracellular Ca(2+) stores) revealed the involvement of both receptor types. Detection of P2X2,3,4,6,7 and P2Y1,2,6,12,14 receptor mRNAs by RT-PCR supported this finding and antagonism by PPADS suggested different functional purinergic receptor population in pillar versus Deiters' and Hensen's cells. The sum of the extra- and intracellular Ca(2+)-dependent components of the response was about equal with the control ATP response (linear additivity) in pillar cells, and showed supralinearity in Deiters' and Hensen's cells. Calcium-induced calcium release might explain this synergistic interaction. The more pronounced Ca(2+) leak from the endoplasmic reticulum in Deiters' and Hensen's cells, unmasked by cyclopiazonic acid, may also suggests the higher activity of the internal stores in Ca(2+) signaling in these cells. Differences in Ca(2+) homeostasis and ATP-induced Ca(2+) signaling might reflect the distinct roles these cells play in cochlear function and pathophysiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app