Add like
Add dislike
Add to saved papers

Tibial Acceleration and Spatiotemporal Mechanics in Distance Runners During Reduced Body Weight Conditions.

CONTEXT: Treadmills that unload runners via a differential air pressure bladder (DAP; e.g. AlterG Anti-Gravity Treadmill) are commonly used to reduce effective body weight in a clinical setting, however, the relationship between the level of unloading and tibial stress is currently unknown.

OBJECTIVE: To determine the relationship between tibial impact acceleration and level of body weight (BW) unloading during running.

DESIGN: Cross-sectional.

SETTING: University motion-analysis laboratory.

PARTICIPANTS: 15 distance runners (9M, 6F; 20.4 ± 2.4 years; 60.1 ± 12.6 kg).

INTERVENTIONS: None.

MAIN OUTCOME MEASURES: Peak tibial acceleration and peak-to-peak tibial acceleration was measured via a uniaxial accelerometer attached to the tibia during a 37-min continuous treadmill run that simulated reduced BW conditions via a DAP bladder. The trial began with a 10-min run at 100% BW followed by nine 3-min stages where BW was systematically reduced from 95% to 60% in 5% increments.

RESULTS: There was no significant relationship between level of BW and either peak tibial acceleration or peak-to-peak tibial acceleration (p>.05). Both heart rate and step rate were significantly reduced with each 5% reduction in BW level (p<.01).

CONCLUSIONS: Although ground reaction forces are reduced when running in reduced BW conditions on a DAP treadmill, tibial shock magnitudes are unchanged as an alteration in spatiotemporal running mechanics (e.g. reduced step rate) may nullify the unloading effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app