JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prenatal hypoxia enhanced angiotensin II-mediated vasoconstriction via increased oxidative signaling in fetal rats.

Toxic factors could cause in utero hypoxia, and prenatal hypoxia (PH) increased incidence of cardiovascular diseases in late life. It is unclear whether/how PH causes vascular injury during fetal life. This study found that PH significantly increased angiotensin II (Ang II)-mediated vessel contractions in fetal thoracic aortas, which was blocked by losartan, not PD123319, indicating that AT1 receptors played a dominant role in the enhanced fetal vasoconstriction following hypoxia. Prenatal hypoxia increased superoxide production and decreased superoxide dismutase (SOD) expression, associated with the enhanced NADPH oxidase (Nox) 4, but not Nox1 or Nox2 in fetal aortas. Ang II-increased vasoconstriction was inhibited by Nox inhibitor apocynin and SOD mimetic blocker tempol. These findings suggested that PH resulted in Ang II/AT1R-mediated fetal vascular hypertensive re-activity via pathways of Nox4-dependent oxidative stress, providing new information regarding the impact of PH on the functional and molecular development of fetal vascular systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app