Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea.

Planta 2016 April
MAIN CONCLUSION: Elicitation of E. grandis plants with Streptomyces PM9 reduced the gray-mold disease, through increasing the levels of enzymes directly related to the induction of plant defense responses, and accumulation of specific phenolic compounds. Members of Eucalyptus are economically important woody species, especially as a raw material in many industrial sectors. Species of this genus are susceptible to pathogens such as Botrytis cinerea (gray mold). Biological control of plant diseases using rhizobacteria is one alternative to reduce the use of pesticides and pathogen attack. This study evaluated the metabolic and phenotypic responses of Eucalyptus grandis and E. globulus plants treated with Streptomyces sp. PM9 and challenged with the pathogenic fungus B. cinerea. Metabolic responses were evaluated by assessing the activities of the enzymes polyphenol oxidase and peroxidase as well as the levels of phenolic compounds and flavonoids. The incidence and progression of the fungal disease in PM9-treated plants and challenged with B. cinerea were evaluated. Treatment with Streptomyces sp. PM9 and challenge with B. cinerea led to changes in the activities of polyphenol oxidase and peroxidase as well as in the levels of phenolic compounds in the plants at different time points. Alterations in enzymes of PM9-treated plants were related to early defense responses in E. grandis. Gallic and chlorogenic acids were on average more abundant, although caffeic acid, benzoic acid and catechin were induced at specific time points during the culture period. Treatment with Streptomyces sp. PM9 significantly delayed the establishment of gray mold in E. grandis plants. These results demonstrate the action of Streptomyces sp. PM9 in inducing plant responses against B. cinerea, making this organism a potential candidate for biological control in Eucalyptus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app