Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The use of proteomic analysis to study trafficking defects in axons.

Mutations in microtubule subunits and microtubule-associated proteins are the causes of many neurological disorders. These human conditions are usually associated with axonal tract defects or degeneration. The molecular mechanisms of these axonal dysfunction are still largely unknown. Conventional methods may not yield a complete analysis of downstream molecules related to axonal dysfunctions. Therefore, we devised a simple unbiased method to screen molecular motors and axonal molecules, which might be involved in axonal defects. We performed our analysis in the mouse with a targeted deletion in the doublecortin (Dcx) gene. Dcx is a microtubule-associated protein with direct effects on microtubule motors. Furthermore, the knockout of Dcx and its functionally redundant structurally similar paralog, doublecortin-like kinase 1 (Dclk1), in mouse results in thinner or absent axon tracts, including the corpus callosum and anterior commissures. We compared protein profiles of corpus callosum from Dcx knockout and wild-type mouse of P0-P2 using mass spectrometry. This strategy allowed us to identify novel candidates downstream of Dcx involved in axon transport.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app