Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhanced long-term potentiation in mature rats in a model of epileptic spasms with betamethasone-priming and postnatal N-methyl-D-aspartate administration.

Epilepsia 2016 March
OBJECTIVE: Patients with epileptic spasms are at high risk for learning and memory impairment later in life. We examined whether synaptic plasticity is affected in the adult hippocampus, a structure responsible for learning and memory, using an animal model of epileptic spasms of unknown cause.

METHODS: We produced a rat model of N-methyl-d-aspartate (NMDA)-induced spasms combined with prenatal betamethasone administration. In 6- to 11-week-old rats, we evaluated the long-term potentiation (LTP) and general properties of synaptic transmission in pyramidal neurons in the CA1 area of the hippocampus in brain slices.

RESULTS: The magnitude of LTP by theta burst stimulation was significantly larger in adult rats with a history of infantile NMDA injections than in control rats and rats that received additional adrenocorticotropic hormone (ACTH) treatment. The frequency of spontaneous excitatory transmission, but not inhibitory transmission, was smaller in adult rats with a history of infantile NMDA injections.

SIGNIFICANCE: This study is the first to provide a basis for the alteration of synaptic plasticity and transmission in a model of epileptic spasms of unknown cause. Postnatal NMDA treatment causing epileptic spasms-like aberrant episodes in the early stage of life in rats has a latent influence on various forms of synaptic plasticity in the hippocampus. Our results provide a novel insight into cognitive impairment that appears later in life in patients with a history of epileptic spasms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app