Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism.

Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app