Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Avoidance of Profound Hypothermia During Initial Reperfusion Improves the Functional Recovery of Hearts Donated After Circulatory Death.

The resuscitation of hearts donated after circulatory death (DCD) is gaining widespread interest; however, the method of initial reperfusion (IR) that optimizes functional recovery has not been elucidated. We sought to determine the impact of IR temperature on the recovery of myocardial function during ex vivo heart perfusion (EVHP). Eighteen pigs were anesthetized, mechanical ventilation was discontinued, and cardiac arrest ensued. A 15-min standoff period was observed and then hearts were reperfused for 3 min at three different temperatures (5°C; N = 6, 25°C; N = 5, and 35°C; N = 7) with a normokalemic adenosine-lidocaine crystalloid cardioplegia. Hearts then underwent normothermic EVHP for 6 h during which time myocardial function was assessed in a working mode. We found that IR coronary blood flow differed among treatment groups (5°C = 483 ± 53, 25°C = 722 ± 60, 35°C = 906 ± 36 mL/min, p < 0.01). During subsequent EVHP, less myocardial injury (troponin I: 5°C = 91 ± 6, 25°C = 64 ± 16, 35°C = 57 ± 7 pg/mL/g, p = 0.04) and greater preservation of endothelial cell integrity (electron microscopy injury score: 5°C = 3.2 ± 0.5, 25°C = 1.8 ± 0.2, 35°C = 1.7 ± 0.3, p = 0.01) were evident in hearts initially reperfused at warmer temperatures. IR under profoundly hypothermic conditions impaired the recovery of myocardial function (cardiac index: 5°C = 3.9 ± 0.8, 25°C = 6.2 ± 0.4, 35°C = 6.5 ± 0.6 mL/minute/g, p = 0.03) during EVHP. We conclude that the avoidance of profound hypothermia during IR minimizes injury and improves the functional recovery of DCD hearts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app