Comparative Study
Controlled Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation.

PURPOSE: To combine diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) for detection of allograft dysfunction in patients early after kidney transplantation and to correlate diffusion parameters with renal function and renal histology of allograft biopsies.

MATERIALS AND METHODS: Between day 4 and 11 after kidney transplantation 33 patients with initial graft function and 31 patients with delayed graft function (DGF) were examined with a 1.5T magnetic resonance imaging (MRI) scanner. DTI and DWI sequences were acquired and fractional anisotropy (FA), apparent diffusion coefficient (ADCmono), pure diffusion (ADCdiff ), and the perfusion fraction (Fp) were calculated. Kidney biopsies in 26 patients were analyzed for allograft pathology, ie, acute tubular injury, inflammation, edema, renal fibrosis, and rejection. Histological results were correlated with MRI parameters.

RESULTS: In the renal medulla FA (0.25 ± 0.06 vs. 0.29 ± 0.06, P < 0.01) and ADCmono (1.73 ± 0.13*10(-3) vs. 1.93 ± 0.16*10(-3) mm(2) /s, P < 0.001) were significantly reduced in DGF patients compared with patients with initial function. For ADCdiff and Fp similar reductions were observed. FA and ADCmono significantly correlated with renal function (r = 0.53 and r = 0.57, P < 0.001) and were inversely correlated with the amount of renal fibrosis (r = -0.63 and r = -0.65, P < 0.05).

CONCLUSION: Combined DTI and DWI detected allograft dysfunction early after kidney transplantation and correlated with allograft fibrosis. J. Magn. Reson. Imaging 2016;44:112-121.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app