Add like
Add dislike
Add to saved papers

Differential expression of calbindin in nigral dopaminergic neurons in two mice strains with differential susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

Parkinson's disease (PD) affects the A9 dopaminergic (DA) neurons of substantia nigra pars compacta (SNpc) whereas other DA neuronal subtypes are spared. The role of calbindin in this differential vulnerability has been long elicited, and is seen in the MPTP induced mice models of PD. A peculiar feature of mice models is the strain specific differences in the susceptibility to MPTP. Here, calbindin-D28K expression in DA neurons of SNpc of MPTP susceptible C57BL/6 mice and MPTP resistant CD-1 mice was studied as a susceptibility marker of degeneration. Unbiased stereological estimation of immunoperoxidase stained midbrain sections revealed significantly higher number of calbindin immunoreactive cells in SNpc of CD-1 mice compared to that of C57BL/6 strain. Western blotting showed minimal differences in the levels. Calbindin-tyrosine hydroxylase immunofluorescence co-labeling was performed to map the calbindin immunoreactive DA neurons in SNpc and ventral tegmental area (VTA) and to quantify the calbindin expression at cellular level. While the levels were comparable in VTA of both mice strains, the SNpc of CD-1 mice showed significantly higher calbindin expression. Within the SNpc, the medial and dorsal subdivisions showed higher calbindin expression in CD-1. The expression in the ventrolateral SNpc of both strains remained comparable. Our observations clearly point at overall higher levels and sizeable percentage of cells expressing more calbindin in SNpc of CD-1 mice, which might confer neuroprotection against MPTP, while its lower expression makes C57BL/6 mice more susceptible. Similar mechanism may be attributed to the phenomenon of differential prevalence of PD in different ethnic populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app