Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation.

Neutrophil extracellular traps (NETs) formation was initially linked with host defence and extracellular killing of pathogens. However, recent studies have highlighted their inflammatory potential. Oxidized low density lipoprotein (oxLDL) has been implicated as an independent risk factor in various acute or chronic inflammatory diseases including systemic inflammatory response syndrome (SIRS). In the present study we investigated effect of oxLDL on NETs formation and elucidated the underlying signalling mechanism. Treatment of oxLDL to adhered PMNs led to a time and concentration dependent ROS generation and NETs formation. OxLDL induced free radical formation and NETs release were significantly prevented in presence of NADPH oxidase (NOX) inhibitors suggesting role of NOX activation in oxLDL induced NETs release. Blocking of both toll like receptor (TLR)-2 and 6 significantly reduced oxLDL induced NETs formation indicating requirement of both the receptors. We further identified Protein kinase C (PKC), Interleukin-1 receptor associated kinase (IRAKs), mitogen-activated protein kinase (MAPK) pathway as downstream intracellular signalling mediators involved in oxLDL induced NETs formation. OxLDL components such as oxidized phospholipids (lysophosphatidylcholine (LPC) and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC)) were most potent NETs inducers and might be crucial for oxLDL mediating NETs release. Other components like, oxysterols, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were however less potent as compared to oxidized phospholipids. This study thus demonstrates for the first time that treatment of human PMNs with oxLDL or its various oxidized phopholipid component mediated NETs release, implying their role in the pathogenesis of inflammatory diseases such as SIRS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app