JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Epileptic Pattern Recognition and Discovery of the Local Field Potential in Amygdala Kindling Process.

Epileptogenesis, which occurs in an epileptic brain, is an important focus for epilepsy. The spectral analysis has been popularly applied to study the electrophysiological activities. However, the resolution is dominated by the window function of the algorithm used and the sample size. In this report, a temporal waveform analysis method is proposed to investigate the relationship of electrophysiological discharges and motor outcomes with a kindling process. Wistar rats were subjected to electrical amygdala kindling to induce temporal lobe epilepsy. During the kindling process, different morphologies of afterdischarges (ADs) were found and a recognition method, using template matching techniques combined with morphological comparators, was developed to automatically detect the epileptic patterns. The recognition results were compared to manually labeled results, and 79%-91% sensitivity was found. In addition, the initial ADs (the first 10 s) of different seizure stages were specifically utilized for recognition, and an average of 85% sensitivity was achieved. Our study provides an alternative viewpoint away from frequency analysis and time-frequency analysis to investigate epileptogenesis in an epileptic brain. The recognition method can be utilized as a preliminary inspection tool to identify remarkable changes in a patient's electrophysiological activities for clinical use. Moreover, we demonstrate the feasibility of predicting behavioral seizure stages from the early epileptiform discharges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app