Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chronic caffeine exposure attenuates blast-induced memory deficit in mice.

OBJECTIVE: To investigate the effects of three different ways of chronic caffeine administration on blast- induced memory dysfunction and to explore the underlying mechanisms.

METHODS: Adult male C57BL/6 mice were used and randomly divided into five groups: control: without blast exposure, con-water: administrated with water continuously before and after blast-induced traumatic brain injury (bTBI), con-caffeine: administrated with caffeine continuously for 1 month before and after bTBI, pre-caffeine: chronically administrated with caffeine for 1 month before bTBI and withdrawal after bTBI, post-caffeine: chronically administrated with caffeine after bTBI. After being subjected to moderate intensity of blast injury, mice were recorded for learning and memory performance using Morris water maze (MWM) paradigms at 1, 4, and 8 weeks post-blast injury. Neurological deficit scoring, glutamate concentration, proinflammatory cytokines production, and neuropathological changes at 24 h, 1, 4, and 8 weeks post-bTBI were examined to evaluate the brain injury in early and prolonged stages. Adenosine A1 receptor expression was detected using qPCR.

RESULTS: All of the three ways of chronic caffeine exposure ameliorated blast-induced memory deficit, which is correlated with the neuroprotective effects against excitotoxicity, inflammation, astrogliosis and neuronal loss at different stages of injury. Continuous caffeine treatment played positive roles in both early and prolonged stages of bTBI; pre-bTBI and post-bTBI treatment of caffeine tended to exert neuroprotective effects at early and prolonged stages of bTBI respectively. Up-regulation of adenosine A1 receptor expression might contribute to the favorable effects of chronic caffeine consumption.

CONCLUSION: Since caffeinated beverages are widely consumed in both civilian and military personnel and are convenient to get, the results may provide a promising prophylactic strategy for blast-induced neurotrauma and the consequent cognitive impairment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app