Journal Article
Review
Add like
Add dislike
Add to saved papers

Acute Kidney Injury: Tubular Markers and Risk for Chronic Kidney Disease and End-Stage Kidney Failure.

Acute kidney injury (AKI) is a common clinical syndrome directly related to patient short-term and long-term morbidity and mortality. Over the last decade, the occurrence rate of AKI has been increasing, and there has also been a growing epidemic of chronic kidney diseases (CKD) and end-stage kidney disease (ESRD) linked to severe and repeated episodes of AKIs. The detection and management of AKI are currently far from satisfactory. A large proportion of AKI patients, especially those with preexisting CKD, are at an increased risk of non-resolving AKI and progressing to CKD and ESRD. Proposed pathological processes that contribute to the transition of AKI to CKD and ESRD include severity and frequency of kidney injury, alterations of tubular cell phenotype with cells predominantly in the G2/M phase, interstitial fibrosis and microvascular rarification related to loss of endothelial-pericyte interactions and pericyte dedifferentiation. Innate immune responses, especially dendritic cell responses related to inadequate adenosine receptor (2a)-mediated signals, autophagic insufficiency and renin-angiotensin system activation have also been implicated in the progression of AKI and transitions from AKI to CKD and ESRD. Although promising advances have been made in understanding the pathophysiology of AKI and AKI consequences, much more work needs to be done in developing biomarkers for detecting early kidney injury, prognosticating kidney disease progression and developing strategies to effectively treat AKI and to minimize AKI progression to CKD and ESRD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app