Add like
Add dislike
Add to saved papers

Immune activation during the implantation phase causes preeclampsia-like symptoms via the CD40-CD40 ligand pathway in pregnant mice.

The CD40 ligand (CD40L) is expressed by T cells and has a critical role in immune system regulation. Interventions targeting CD40L interactions following embryo implantation represent an approach to preventing preeclampsia (PE). To better understand the role of CD40L in PE, we developed a PE mouse model in which we examined how CD40L-induced immune activation affects embryo implantation. Blastocysts were incubated with CD40L-expressing adenovirus and then were transferred into the uterine horns of pseudopregnant ICR mice. Histology, biochemistry and flow cytometry experiments were performed to examine the characteristics of the mouse model. In early pregnancy, decidualization and spiral artery remodeling were reduced in CD40L-transfected mice (CD40L mice) compared with control mice. Hematoxylin-eosin (HE) staining revealed hemorrhaging and excess fibrin deposition at the labyrinth layer-junctional zone interface of the placenta, and PAS staining demonstrated prominent focal and segmental sclerosis with collapsed glomerular capillaries in the kidneys of the CD40L mice. Flow cytometry data showed that interferon-γ production derived from CD4(+) T cells was elevated in the splenic cells of CD40L mice. Blood pressure (measured by the tail-cuff method) and urine albumin concentrations were significantly increased in CD40L mice compared with control mice. Furthermore, the plasma concentrations of soluble Flt-1 and soluble endoglin were increased in CD40L mice, as occurs in human patients with PE. Thus, CD40L-induced T-helper cell type 1 differentiation during embryo implantation may have a critical role in the pathogenesis of a PE-like presentation in a novel mouse model of PE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app