Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A new selective fluorene-based fluorescent internal charge transfer (ICT) sensor for sugar alcohols in aqueous solution.

Sugar alcohols, such as sorbitol, are commonly used as a replacement for sucrose in the food industry, applied as starting material for vitamin C synthesis, and involved as one of the causative factors in diabetic complications. Therefore, their detection and quantification in aqueous solution are necessary. The reversible covalent interactions between boronic acids and diols are the basis of efficient methods for the detection of saccharides. Herein, we report a new internal charge transfer (ICT) fluorene-based fluorescent boronic acid sensor (1) 2-[(9,9-dimethyl-9H-fluoren-2-yl-amino)methyl] phenyl boronic acid that shows significant fluorescence changes upon addition of saccharides. The boronic acid has high affinity (K a = 1107.9 M(-1)) and selectivity for sorbitol at pH = 8.31. It showed a linear response toward sorbitol in the concentration range from 1.0 × 10(-5) to 6.0 × 10(-4) mol L(-1) with the detection limit of 7.04 × 10(-6) mol L(-1). Sensor 1 was used to detect sorbitol in real samples with good recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app