Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology.

Neuron 2016 January 7
Spinocerebellar ataxia type 1 (SCA1), due to the expansion of a polyglutamine repeat within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), the cause of which is poorly understood. Here, we identified the unique proteomic signature of Sca1(154Q/2Q) PCs at an early stage of disease, highlighting extensive alterations in proteins associated with synaptic functioning, maintenance, and transmission. Focusing on Homer-3, a PC-enriched scaffold protein regulating neuronal activity, revealed an early decline in its expression. Impaired climbing fiber-mediated synaptic transmission diminished mTORC1 signaling, paralleling Homer-3 reduction in Sca1(154Q/2Q) PCs. Ablating mTORC1 within PCs or pharmacological inhibition of mTORC1 identified Homer-3 as its downstream target. mTORC1 knockout in Sca1(154Q/2Q) PCs exacerbated and accelerated pathology. Reinstating Homer-3 expression in Sca1(154Q/2Q) PCs attenuated cellular dysfunctions and improved motor deficits. Our work reveals that impaired mTORC1-Homer-3 activity underlies PC susceptibility in SCA1 and presents a promising therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app