Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Review
Add like
Add dislike
Add to saved papers

Sodium channel Nav1.8: Emerging links to human disease.

Neurology 2016 Februrary 3
The NaV1.8 sodium channel, encoded by gene SCN10A, was initially termed sensory neuron-specific (SNS) due to prominent expression in primary sensory neurons including dorsal root ganglion (DRG) neurons. Early studies on rodent NaV1.8 demonstrated depolarized voltage dependence of channel inactivation, a slow rate of inactivation, and rapid recovery from inactivation. As a result of these biophysical properties, NaV1.8 supports repetitive firing in response to sustained depolarization. This article reviews recent studies that reveal multiple links of NaV1.8 to human disease: (1) It has recently been shown that functional attributes that distinguish NaV1.8 from other sodium channel subtypes are exaggerated in human NaV1.8; its influence on neuronal activity is thus greater than previously thought. (2) Gain-of-function mutations of NaV1.8 that produce DRG neuron hyperexcitability have been found in 3% of patients with painful neuropathy, establishing a role in pathogenesis. (3) NaV1.8 is ectopically expressed within Purkinje neurons in multiple sclerosis (MS), where it perturbs electrical activity. Recent evidence indicates that variants of SCN10A predict the degree of cerebellar dysfunction in MS. (4) Emerging evidence has linked SCN10A variants to disorders of cardiac rhythm, via mechanisms that may include an effect on cardiac innervation. Involvement of NaV1.8 in neurologic disease may have therapeutic implications. NaV1.8-specific blocking agents, under development, ameliorate pain and attenuate MS-like deficits in animal models. Recent studies suggest that pharmacogenomics may permit the matching of specific channel blocking agents to particular patients. The new links of NaV1.8 in human disease raise new questions, but also suggest new therapeutic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app