JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2.

Nature Communications 2016 January 9
Mechanistic target of rapamycin complex 1 (mTORC1), defined by the presence of Raptor, is an evolutionarily conserved and nutrient-sensitive regulator of cellular growth and other metabolic processes. To date, all known functions of Raptor involve its scaffolding mTOR kinase with substrate. Here we report that mTORC1-independent ('free') Raptor negatively regulates hepatic Akt activity and lipogenesis. Free Raptor levels in liver decline with age and in obesity; restoration of free Raptor levels reduces liver triglyceride content, through reduced β-TrCP-mediated degradation of the Akt phosphatase, PHLPP2. Commensurately, forced PHLPP2 expression ameliorates hepatic steatosis in diet-induced obese mice. These data suggest that the balance of free and mTORC1-associated Raptor governs hepatic lipid accumulation, and uncover the potentially therapeutic role of PHLPP2 activators in non-alcoholic fatty liver disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app