JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Loss of PPARγ in endothelial cells leads to impaired angiogenesis.

Journal of Cell Science 2016 Februrary 16
Tie2-promoter-mediated loss of peroxisome proliferator-activated receptor gamma (PPARγ, also known as PPARG) in mice leads to osteopetrosis and pulmonary arterial hypertension. Vascular disease is associated with loss of PPARγ in pulmonary microvascular endothelial cells (PMVEC); we evaluated the role of PPARγ in PMVEC functions, such as angiogenesis and migration. The role of PPARγ in angiogenesis was evaluated in Tie2CrePPARγ(flox/flox) and wild-type mice, and in mouse and human PMVECs. RNA sequencing and bioinformatic approaches were utilized to reveal angiogenesis-associated targets for PPARγ. Tie2CrePPARγ(flox/flox) mice showed an impaired angiogenic capacity. Analysis of endothelial progenitor-like cells using bone marrow transplantation combined with evaluation of isolated PMVECs revealed that loss of PPARγ attenuates the migration and angiogenic capacity of mature PMVECs. PPARγ-deficient human PMVECs showed a similar migration defect in culture. Bioinformatic and experimental analyses newly revealed E2F1 as a target of PPARγ in the regulation of PMVEC migration. Disruption of the PPARγ-E2F1 axis was associated with a dysregulated Wnt pathway related to the GSK3B interacting protein (GSKIP). In conclusion, PPARγ plays an important role in sustaining angiogenic potential in mature PMVECs through E2F1-mediated gene regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app