Add like
Add dislike
Add to saved papers

Finite-element-modeling of egg white as a substitute for tissue coagulation during bipolar radiofrequency-induced thermofusion.

Radiofrequency-induced thermofusion is a frequently used electrosurgical procedure for the sealing of blood vessels. A disadvantage of vessel sealing instruments is that the generated thermal energy spreads to the surrounding tissue and may irreversibly damage it. This is particularly problematic when operating close to sensitive structures such as nerves. Given their advantages, there is nonetheless a lot of interest in using bipolar vessel sealing for surgical procedures. To select instruments that may be safely used in such cases, it is important to reliably quantify the thermal spread to the surrounding tissue. Mathematical models can help to evaluate the transient behavior, that is the evolution of the thermal spread over time, more precisely. A finite element model allows for a detailed analysis of inhomogeneities in the spatial temperature distribution. As a first step towards a finite model of the bipolar vessel sealing process, a model of the coagulation of chicken egg white is presented here. Egg white has thermal and electrical properties that are very similar to tissue, making it suitable as a substitute for the analysis of the coagulation process. It has the additional advantage, that the spatial and temporal evolution of the thermal spread can be visually gauged. The presented model describes the experimentally observed spatial temperature distribution, the shape of the coagulated egg white, and the formation of hotspots. Furthermore, it is shown that the model can correctly predict the shape of the coagulated egg white in further experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app