Add like
Add dislike
Add to saved papers

Colon centerline extraction in fragmented segmentations.

In virtual colonoscopy, the clinical need is a smooth centered path from the rectum to the cecum, for interactive navigation along the colonic lumen. The primary challenge is breakages in the colon, due to fecal residue, abnormalities, poor insufflation and inadequate electronic cleansing. Here we propose a method, that is a modification of the classic energy minimized geodesic, that extracts centered paths through fragmented colons. To begin, we perform electronic cleansing, automatically localize 4 points: rectum, cecum, sphlenic and hepatic flexures; followed by region growing and heuristic approaches to generate the initial segmentation. This is followed by a daisy chaining procedure to link possibly large colon blobs that may have been missed as weaker candidate segmentations. We then perform a front propagation to extract a minimal energy path through the ordered set of points. This propagation is guided by multiple forces: (a) A strong force given by the distance to the colon segmentation surface (b) A weak force derived from the CT intensity (c) A weak force from the distance to the surface of weaker candidate colon segmentations (d) A geodesic repulsive force, where the other points exhibit an repelling force in their voronoi partition, the force proportional to the geodesic distance to the point. Our contribution is a path extraction method for the colon that is the energy minimized geodesic (a) favouring centeredness (b) punching through gaps, traversing in so far as possible through lower intensity regions and possibly centered within these gaps (c) ordered through the feature points. Results show improvements of the method over the standard minimal energy path approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app