Add like
Add dislike
Add to saved papers

Analysis of bipolar external excitation of spherical tissue by spatially opposed current source and sink points.

The recently increasing role in medical imaging that electrophysiology plays has spurned the need for its quantitative analysis at all scales-ions, cells, tissues, organs, etc.; so, here is presented a model of nerve tissue in a spherical volume excited by a point current source at one pole and a point current sink at the opposite pole. The sphere of tissue is described as an isotropic bidomain, consisting of the intra- and extra-cellular regions and the membrane that separates them, and is immersed in an infinite isotropic conductive bath. The system of coupled differential equations is solved by redefining the domains to be in terms of a monodomain and a membrane. The solution takes the form of an infinite sum of the product of certain transcendental functions. The study concludes with a numeric example in which the boundary conditions are shown to be satisfied, validating this analysis, paving the way for more sophisticated models of excitable tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app