JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rapid Electron Transport Phenomenon in the Bis(terpyridine) Metal Complex Wire: Marcus Theory and Electrochemical Impedance Spectroscopy Study.

The authors reported previously that bis(terpyiridne)iron(II) complex oligomer wires possess outstanding long-range intrawire electron transport ability. Here, molecular arrays of gold-electrode-bis(terpyridine)iron(II)-ferrocene are constructed by stepwise coordination as simple models of the oligomer wire system. The fast electron transfer between the terminal ferrocene and the gold electrode through the bis(terpyiridne)iron(II) complex unit is studied by potential step chronoamperometry (PSCA) and electrochemical impedance spectroscopy (EIS). Tafel plots derived from PSCA are analyzed based on Marcus theory. The plots reveal greater first-order electron transfer rate constant, weaker electronic coupling between the terminal ferrocene and the gold electrode, and smaller reorganization energy than shown by a conventional ferrocenylalkanethiol self-assembled monolayer. The electron transfer rate constants estimated by EIS agree with the PSCA results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app