Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rituximab-conjugated and doxorubicin-loaded microbubbles combined with ultrasound irradiation inhibits proliferation and induces apoptosis in Raji cell lines.

Oncology Reports 2016 Februrary
Doxorubicin (DOX) is one of the most important medicines used for the treatment for B cell lymphoma, yet its clinical efficacy is often limited by severe adverse effects. Drug-loaded microbubbles, combined with ultrasound (US) irradiation, has shown great promise in reducing DOX-induced side effects and improving therapeutic efficacy. Nevertheless, these drug-loaded microbubbles are non-targeted microbubbles with comparatively suboptimal efficiency. Therefore, we synthesized targeted and DOX-loaded microbubbles (DMs), combined with US irradiation, for triggering drug release in lymphoma B cells. DMs were coated with rituximab via a biotin-avidin linkage to target Raji cells that overexpress the CD-20 antigen. In the present study, the cell viability after treatment with rituximab-conjugated DMs (RDMs) containing 0.25, 0.5 and 1.0 µg/ml DOX + US was 45.69±6.85, 25.31±2.60 and 15.67±2.83%, respectively, which demonstrated that RDMs + US produced significantly higher cytotoxicity than the other treatments. The early apoptosis ratio in the Raji cells at 48 h after the treatment was 32.4±2.84%, which was notably higher than the ratio in the other treatment groups. The results confirm the hypothesis that US-mediated targeting of CD-20-positive B cell lymphoma and the use of DMs may improve the DOX therapeutic efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app