Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy.

Resistance of cancer to radiotherapy and/or chemotherapy is one of the important reasons of clinical treatment failure and recurrence. Chemoradiation is an optional method to over-coming of radioresistance and chemoresistance. Selenium nanoparticles (SeNPs) with special chemical and physical properties, has been identified as a novel nanocarrier and therapy agent with broad-spectrum anticancer activities due to generate ROS in cells. Herein, X-ray responsive selenium nanoparticles were facilely fabricated by using PEG as surface decorator and template. This nanosystem (PEG-SeNPs) demonstrated X-ray responsive property that was attributed to its amorphous characteristic. Interestingly, the nanosystem demonstrated significant radiosensitization effects with X-ray. Specifically, co-treatment of cancer cells with PEG-SeNPs and X-ray significantly and synergistically enhanced the cells growth inhibition through induction of cell apoptosis, as evidenced by DNA fragmentation and activation of caspase-3. In the cell model, we found that internalized nanoparticles could degrade upon X-ray exposure, which further confirm the X-ray responsive property of the nanoparticles. Moreover, the nanosystem could significantly induced intracellular ROS generation in a time-dependent manner, which peaked at about 40min and gradually decreased thereafter. As a results, ROS overproduction led to mitochondria fragmentation and the cell apoptosis. Taken together, this study provides a novel strategy for rational design and facile synthesis of chemo-radio therapeutic radiosensitization nanomaterials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app