JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Insight into the Catalytic Mechanism of Bimetallic Platinum-Copper Core-Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions.

Nano Letters 2016 January 14
The oxygen evolution reaction (OER) plays a critical role in multiple energy conversion and storage applications. However, its sluggish kinetics usually results in large voltage polarization and unnecessary energy loss. Therefore, designing efficient catalysts that could facilitate this process has become an emerging topic. Here, we present a unique Pt-Cu core-shell nanostructure for catalyzing the nonaqueous OER. The catalysts were systematically investigated with comprehensive spectroscopic techniques, and applied in nonaqueous Li-O2 electrochemical cells, which exhibited dramatically reduced charging overpotential (<0.2 V). The superior performance is explained by the robust Cu(I) surface sites stabilized by the Pt core in the nanostructure. The insights into the catalytic mechanism of the unique Pt-Cu core-shell nanostructure gained in this work are expected to serve as a guide for future design of other nanostructured bimetallic OER catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app