JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Cortical neurogenesis in fragile X syndrome.

The absence of fragile X mental retardation 1 protein (FMRP) results in fragile X syndrome (FXS) that is a common cause of intellectual disability and a variant of autism spectrum disorder. There is evidence that FMRP is involved in neurogenesis. FMRP is widely expressed throughout the embryonic brain development and its expression levels increases during neuronal differentiation. Cortical neural progenitors propagated from human fetal FXS brain show expression changes of genes which encode components of intracellular signal transduction cascades, including receptors, second messengers, and transduction factors. The absence of functional FMRP enhances transition of radial glia to intermediate progenitor cells. Radial glial cells provide scaffolding for migrating neurons and express functional receptors for metabotropic glutamate receptors. The absence of FMRP results in alterations of neuronal differentiation and migration, which contribute to developmental changes in brain structure and function in FXS. Here, cortical neurogenesis in FXS is reviewed and the putative contribution of brain-derived neurotrophic factor to defects of FXS neurogenesis is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app