Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Oxygen-sensing by arterial chemoreceptors: Mechanisms and medical translation.

Acute O2 sensing is necessary for the activation of cardiorespiratory reflexes (hyperventilation and sympathetic activation), which permit the survival of individuals under hypoxic environments (e.g. high altitude) or medical conditions presenting with reduced capacity for gas exchange between the lung alveoli and the blood. Changes in blood O2 tension are detected by the arterial chemoreceptors, in particular the carotid body (CB), which act in concert with the adrenal medulla (AM) to facilitate rapid adaptations to hypoxia. The field of arterial chemoreception has undergone a considerable expansion in recent years, with many of the fundamental observations made at the molecular and cellular levels serving to improve our understanding of the pathogenesis of numerous medical disorders, and even to propose advances in the treatment strategies. In this review, after a short historical preface, we describe the current model of chemosensory transduction based on the modulation of membrane K(+) channels by O2 in specialized chemoreceptor cells. Recent progress in elucidating the molecular mechanisms underlying the modulation of ion channels by O2 tension, which involves mitochondrial complex I, is also discussed. The discovery in the last few years of a specific population of neural crest-derived stem cells in the CB explains the reversible growth of this organ, an intriguing and unusual property of this type of neuronal tissue that contributes to acclimatization under chronic hypoxia. The essential homeostatic role of the CB-AM axis is clearly evident in newly generated mouse models that reach adulthood, albeit with CB and AM atrophy. These animals exhibit a marked intolerance to even mild hypoxia. CB inhibition or over-activation can have important medical consequences. Respiratory depression by general anesthetics or by opioid use is a common clinical condition that frequently causes death in susceptible individuals. An exaggerated sympathetic outflow due to over-activation of the CB-AM axis may contribute to the pathogenesis of several highly prevalent medical conditions, such as chronic heart failure, obstructive sleep apnea, obesity, metabolic syndrome, and diabetes. A detailed understanding of the molecular mechanisms underlying acute O2 sensing may help in the design of more efficient therapeutic approaches to combat these disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app