Add like
Add dislike
Add to saved papers

Selective regulation of neurosteroid biosynthesis under ketamine-induced apoptosis of cortical neurons in vitro.

Numerous studies have suggested that ketamine administration can induce neuroapoptosis in primary cultured cortical neurons. Neurosteroids modulate neuronal function and serve important roles in the central nervous system, however the role of neurosteroids in neuroapoptosis induced by ketamine remains to be elucidated. The present study aimed to explore whether neurosteroidogenesis was a pivotal mechanism for neuroprotection against ketamine-induced neuroapoptosis, and whether it may be selectively regulated under ketamine-induced neuroapoptosis conditions in primary cultured cortical neurons. To study this hypothesis, the effect of ketamine exposure on neurosteroidogenesis in primary cultured cortical neurons was investigated. Cholesterol, a substrate involved in the synthesis of neurosteroids, was added to the culture medium, and neurosteroids were quantified using high-performance liquid chromatography-tandem mass spectrometry analysis. The data demonstrated that cholesterol blocked ketamine-induced neuroapoptosis by promoting the synthesis of various neurosteroids, and the pathway of neurosteroid testosterone conversion into estradiol was inhibited by ketamine exposure. These data suggest that endogenous neurosteroids biosynthesis is critical for neuroprotection against ketamine-induced neuroapoptosis and inhibiting the biosynthesis of neuroprotective-neurosteroid estradiol is of notable importance for ketamine-induced neuroapoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app