JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus.

Filamentous fungi have a dominant nonhomologous-end joining (NHEJ) DNA repair pathway, which results in the majority of transformed progenies having random heterologous insertion mutagenesis. Thus, lack of a versatile genome-editing tool prevents us from carrying out precise genome editing to explore the mechanism of pathogenesis. Moreover, clinical isolates that have a wild-type ku80 background without any selection nutrition marker especially suffer from low homologous integration efficiency. In this study, we have established a highly efficient CRISPR mutagenesis system to carry out precise and efficient in-frame integration with or without marker insertion with approximately 95-100% accuracy via very short (approximately 35-bp) homology arms in a process referred to as microhomology-mediated end joining (MMEJ). Based on this system, we have successfully achieved an efficient and precise integration of an exogenous GFP tag at the predicted site without marker insertion and edited a conidial melanin gene pksP and a catalytic subunit of calcineurin gene cnaA at multiple predicted sites with or without selection marker insertion. Moreover, we found that MMEJ-mediated CRISPR-Cas9 mutagenesis is independent of the ku80 pathway, indicating that this system can function as a powerful and versatile genome-editing tool in clinical Aspergillus isolates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app