JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Carbohydrate supplementation attenuates decrement in performance in overtrained rats.

Carbohydrate ingestion at the end of a single exercise is recognized as delaying fatigue and accelerating recovery, but whether chronic ingestion can prevent overtraining during periods of intense training has not yet been elucidated. This study aimed to determine whether carbohydrate supplementation minimizes overtraining in Wistar rats. The animals underwent 11 weeks of training (running) on a treadmill, and the last 3 weeks were designed to induce overtraining. One group was supplemented with carbohydrates (EX-CHO) (n = 13), 1 group had no supplementation (EX) (n = 10), and a third group remained inactive (C) (n = 9). Performance tests were given before training (Pr1) and at the 8th (Pr2) and 11th (Pr3) training week. Food intake, body weight, testosterone, cortisol, malondialdehyde, creatine kinase, and activities of the PI3-K, Akt-1, mTOR, and GSK-3 enzymes were measured. In the EX group, there was a significant 32.6% performance decrease at Pr3 when compared with Pr2. In addition, at protocol completion, the EX-CHO group had a greater gastrocnemius weight than did the C group (p = 0.02), which the EX group did not. Training caused anorexia, decreased testosterone (p = 0.001), and increased malondialdehyde (p = 0.009) in both exercise groups compared with the C group, with no influence of carbohydrate supplementation on these variables (p > 0.05). Compared with in the C group, the activity of Akt-1 was higher in the EX-CHO group but not in the EX group (p = 0.013). Carbohydrate supplementation promoted an attenuation in the performance decrement and maintained gastrocnemius muscle mass in animals that had undergone overtraining protocols, which was accompanied by increased activity of the Akt-1 molecular indicator.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app