JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Spontaneous polarization of solid CO on water ices and some astrophysical implications.

Reflection absorption infrared spectroscopy (RAIRS) is used to show that when 20 monolayer (ML) films of solid CO are laid down on solid water substrates at 20 to 24 K, the films polarize spontaneously. CO films were prepared on three types of water ice: porous amorphous solid water (CO-pASW), crystalline water (CO-CSW) and compact amorphous solid water (CO-cASW) with corresponding fields of 3.76 ± 0.15 × 10(7) V m(-1) for CO-pASW, 2.87 ± 0.15 × 10(7) V m(-1) for CO-CSW and 1.98 ± 0.15 × 10(7) V m(-1) for CO-cASW. For comparison, CO laid down on SiO2 yields 3.8 ± 0.15 × 10(7) V m(-1). Our results are of relevance to an understanding of the chemistry and physics of dense star-forming regions in the interstellar medium, in which dust particles become coated with solid CO on a layer of cASW. The polarization charge which accumulates on the CO surface acts as a catalyst for the removal of electrons and ions from the medium and may account for the low degree of ionization observed in these regions, a feature which is an important factor for the rate of star formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app