Add like
Add dislike
Add to saved papers

Implant fracture under dynamic fatigue loading: influence of embedded angle and depth of implant.

Odontology 2016 September
The purpose of this study was to investigate the relationship between implant fracture under cyclic-fatigue loading at different embedding angles, embedding depths, and loading forces. Twenty-four cylinder-type implants 3.3 mm in diameter and 10 mm in length were used. Test specimens were 30 mm(3) resin blocks with one surfaces inclined at angles of either 5°, 10°, 15° and 20° and embedded vertically with implants at depths of either 5 or 10 mm to the these surfaces. A straight abutment was connected to the implant and cut to 5 mm in length, and a hemispherical crown 5 mm in diameter and 7 mm in length was cast with a 12 % gold-silver-palladium alloy and cemented onto the abutment. Each specimen was mounted onto a fatigue loading device to apply repeated vertical loads of 294, 392, and 490 N to the coronal edge of the crown 60 times per min until reaching 100,000 cycles. For each respective specimen, we recorded the combined conditions of embedding and loading forces and the number of loading cycles until fracture, and then observed the fracture sites microscopically. The number of loading cycles until implant fracture tended to decrease in proportion to increased loading forces and embedded angles, and decreased embedded depths. Implant fracture was observed at angles of inclination over 10°. For specimens with an implant embedded at a depth of 5 mm, almost all fractures occurred at the center of the implant body; however, for those embedded at a depth of 10 mm, fractures occurred at the interface between the implant body and the abutment. These results demonstrate that implant fracture is associated with the loading axis, the amount of loading, and the embedded depth of the implant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app