Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prediction of tissue-specific effects of gene knockout on apoptosis in different anatomical structures of human brain.

BACKGROUND: An important issue in the target identification for the drug design is the tissue-specific effect of inhibition of target genes. The task of assessing the tissue-specific effect in suppressing gene activity is especially relevant in the studies of the brain, because a significant variability in gene expression levels among different areas of the brain was well documented.

RESULTS: A method is proposed for constructing statistical models to predict the potential effect of the knockout of target genes on the expression of genes involved in the regulation of apoptosis in various brain regions. The model connects the expression of the objective group of genes with expression of the target gene by means of machine learning models trained on available expression data. Information about the interactions between target and objective genes is determined by reconstruction of target-centric gene network. STRING and ANDSystem databases are used for the reconstruction of gene networks. The developed models have been used to analyse gene knockout effects of more than 7,500 target genes on the expression of 1,900 objective genes associated with the Gene Ontology category "apoptotic process". The tissue-specific effect was calculated for 12 main anatomical structures of the human brain. Initial values of gene expression in these anatomical structures were taken from the Allen Brain Atlas database. The results of the predictions of the effect of suppressing the activity of target genes on apoptosis, calculated on average for all brain structures, were in good agreement with experimental data on siRNA-inhibition.

CONCLUSIONS: This theoretical paper presents an approach that can be used to assess tissue-specific gene knockout effect on gene expression of the studied biological process in various structures of the brain. Genes that, according to the predictions of the model, have the highest values of tissue-specific effects on the apoptosis network can be considered as potential pharmacological targets for the development of drugs that would potentially have strong effect on the specific area of the brain and a much weaker effect on other brain structures. Further experiments should be provided in order to confirm the potential findings of the method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app