JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biological activity and in vivo half-life of pro-activin A in male rats.

Mature TGF-β proteins are used in vivo to promote bone growth, combat obesity, reverse fibrosis and pulmonary arterial hypertension, and as potential rejuvenation factors. However, the serum half-life of this family of growth factors is short (∼5 min), limiting their therapeutic potential. Because TGF-β proteins are normally secreted from cells with their prodomains attached, we considered whether these molecules could extend the in vivo half-life and activity of their respective growth factors. Using activin A as a model ligand, we initially modified the cleavage site between the pro- and mature domains to ensure complete processing of the activin A precursor. Co-immunoprecipitation studies confirmed mature activin A is secreted from cells in a non-covalent complex with its prodomain, however, the affinity of this interaction is not sufficient to suppress activin A in vitro biological activity. The plasma clearance profiles of purified pro- and mature activin A were determined over a 4 h period in adult male rats. Both activin forms demonstrated a two-phase decay, with the half-life of pro-activin A (t1/2 fast = 12.5 min, slow = 31.0 min) being greater than that of mature activin A (t1/2 fast = 5.5 min, slow = 20.3 min). Both pro- and mature activin A induced significant increases in serum follicle stimulating hormone levels after 4 h, but no differences were observed in the relative in vivo bioactivities of the two activin isoforms. Increased serum half-life of activin A in the presence of its prodomain identifies a new means to increase the therapeutic effectiveness of TGF-β proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app