Add like
Add dislike
Add to saved papers

Enhanced Thermostability of Lipoxygenase from Anabaena sp. PCC 7120 by Site-Directed Mutagenesis Based on Computer-Aided Rational Design.

Lipoxygenase from Anabaena sp. PCC 7120 (Ana-LOX) was thermally unstable. So, improving the thermostability of the enzyme was quite essential. The target site of Ana-LOX selected for site-directed mutagenesis was based on computer-aided rational design. The thermostability and specific activity of Ana-LOX were improved with replacing valine with alanine at the target site 421 and the site 40. Compared to the wild-type enzyme which has a half-life (T 1/2) of inactivation of 3.8 min at 50 °C, the T 1/2 of mutant enzymes with V421A and V40A substitution increased to 4.4 and 7.0 min, respectively. The double mutant V421A/V40A showed a synergistic effect with a T 1/2 value of 8.3 min, resulting in a 1.18-fold improvement compared to the original Ana-LOX. V421A, V40A, and V421A/V40A also obtained 4.83, 41.58, and 80.07 % increase in specific activity, respectively. This study provides useful theoretical reference for enzyme molecular modification and computer-aided rational design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app