Add like
Add dislike
Add to saved papers

Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology.

In cardiac electrophysiology, the propagation of the action potential may be described by a set of reaction-diffusion equations known as the bidomain model. The shape of the solution is determined by a balance of a strong reaction and a relatively weak diffusion, which leads to steep variations in space and time. From a numerical point of view, the sharp spatial gradients may be seen as particularly problematic, because computational grid resolution on the order of 0.1 mm or less is required, yielding considerable computational efforts on human geometries. In this paper, we discuss a number of well-known numerical schemes for the bidomain equation and show how the quality of the solution is affected by the spatial discretization. In particular, we study in detail the effect of discretization on the conduction velocity (CV), which is an important quantity from a physiological point of view. We show that commonly applied finite element techniques tend to overestimate the CV on coarse grids, while it tends to be underestimated by finite difference schemes. Furthermore, the choice of interpolation and discretization scheme for the nonlinear reaction term has a strong impact on the CV. Finally, we exploit the results of the error analysis to propose improved numerical methods, including a stabilized scheme that tends to correct the CV on coarse grids but converges to the correct solution as the grid is refined. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app