Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of local eosinophilopoietic processes in the development of airway eosinophilia in prednisone-dependent severe asthma.

BACKGROUND: In severe asthmatics with persistent airway eosinophilia, blockade of interleukin-5 has significant steroid-sparing effects and attenuates blood and sputum eosinophilia. The contribution of local maturational processes of progenitors within the airways relative to the recruitment of mature cells from the peripheral circulation to the development of airway eosinophilia is not known. We hypothesize that local eosinophilopoiesis may be the predominant process that drives persistent airway eosinophilia and corticosteroid requirement in severe asthmatics.

OBJECTIVES: In a cross-sectional study, the number and growth potential of eosinophil-lineage-committed progenitors (EoP) were assayed in 21 severe eosinophilic asthmatics, 19 mild asthmatics, eight COPD patients and eight normal subjects. The effect of anti-IL-5 treatment on mature eosinophils and EoP numbers was made in severe eosinophilic asthmatics who participated in a randomized clinical trial of mepolizumab (substudy of a larger GSK sponsored global phase III trial, MEA115575) where subjects received mepolizumab (100 mg, n = 9) or placebo (n = 8), as six monthly subcutaneous injections.

RESULTS: Mature eosinophil and EoP numbers were significantly greater in the sputum of severe asthmatics compared with all other subject groups. In colony-forming assays, EoP from blood of severe asthmatics demonstrated a greater response to IL-5 than mild asthmatics. Treatment of severe asthmatics with mepolizumab significantly attenuated blood eosinophils and increased EoP numbers consistent with blockade of systemic eosinophilopoiesis. There was however no significant treatment effect on mature eosinophils, sputum EoP numbers or the prednisone maintenance dose.

CONCLUSIONS AND CLINICAL RELEVANCE: Patients with severe eosinophilic asthma have an exaggerated eosinophilopoeitic process in their airways. Treatment with 100 mg subcutaneous mepolizumab significantly attenuated systemic differentiation of eosinophils, but did not suppress local airway eosinophil differentiation to mature cells. Targeting IL-5-driven eosinophil differentiation locally within the lung maybe of relevance for optimal control of airway eosinophilia and asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app