Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Novel Therapeutic Targets and Drug Candidates for Modifying Disease Progression in Adrenoleukodystrophy.

X-linked adrenoleukodystrophy (X-ALD) is the most frequent inherited monogenic demyelinating disease. It is often lethal and currently lacks a satisfactory therapy. The disease is caused by loss of function of the ABCD1 gene, a peroxisomal ATP-binding cassette transporter, resulting in the accumulation of very-long-chain fatty acids (VLCFA) in organs and plasma. Recent findings on pathomechanisms of the peroxisomal neurometabolic disease X-ALD have provided important clues on therapeutic targets. Here we describe the impact of chronic redox imbalance caused by the excess VLCFA on mitochondrial biogenesis and respiration, and explore the consequences on the protein quality control systems essential for cell survival, such as the proteasome and autophagic flux. Defective proteostasis, together with mitochondrial malfunction, is a hallmark of the most prevalent neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, and of the aging process. Thus, we discuss molecular targets and emerging treatment options that may be common to both multifactorial neurodegenerative disorders and X-ALD. New-generation antioxidants, some of them mitochondrial targeted, mitochondrial biogenesis boosters such as pioglitazone and resveratrol, and the mTOR inhibitor temsirolimus hold promise as disease-modifying therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app