Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Dichotomy of Endoplasmic Reticulum Stress Response in Liver Ischemia-Reperfusion Injury.

Transplantation 2016 Februrary
Endoplasmic reticulum (ER) stress plays critical roles in the pathogenesis of liver ischemia-reperfusion injury (IRI). As ER stress triggers an adaptive cellular response, the question of what determines its functional outcome in liver IRI remains to be defined. In a murine liver partial warm ischemia model, we studied how transient (30 minutes) or prolonged (90 minutes) liver ischemia regulated local ER stress response and autophagy activities and their relationship with liver IRI. Effects of chemical chaperon 4-phenylbutyrate (4-PBA) or autophagy inhibitor 3-methyladenine (3-MA) were evaluated. Our results showed that although the activating transcription factor 6 branch of ER stress response was induced in livers by both types of ischemia, liver autophagy was activated by transient, but inhibited by prolonged, ischemia. Although 3-MA had no effects on liver IRI after prolonged ischemia, it significantly increased liver IRI after transient ischemia. The 4-PBA treatment protected livers from IRI after prolonged ischemia by restoring autophagy flux, and the adjunctive 3-MA treatment abrogated its liver protective effect. The same 4-PBA treatment, however, increased liver IRI and disrupted autophagy flux after transient ischemia. Although both types of ischemia activated 5' adenosine monophosphate-activated protein kinase and inactivated protein kinase B (Akt), prolonged ischemia also resulted in downregulations of autophagy-related gene 3 and autophagy-related gene 5 in ischemic livers. These results indicate a functional dichotomy of ER stress response in liver IRI via its regulation of autophagy. Transient ischemia activates autophagy to protect livers from IRI, whereas prolonged ischemia inhibits autophagy to promote the development of liver IRI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app