CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Development of CT-guided biopsy sampling for time-dependent postmortem redistribution investigations in blood and alternative matrices--proof of concept and application on two cases.

The postmortem redistribution (PMR) phenomenon complicates interpretation in forensic toxicology. Human data on time-dependent PMR are rare and only exist for blood so far. A new method for investigation of time-dependent PMR in blood as well as in alternative body fluids and tissues was developed and evaluated using automated biopsy sampling. At admission of the bodies, introducer needles were placed in liver, lung, kidney, muscle, spleen, adipose tissue, heart, femoral vein, and lumbar spine using a robotic arm guided by a computed tomography scanner (CT). Needle placement accuracy was analyzed and found to be acceptable for the study purpose. Tissue biopsies and small volume body fluid samples were collected in triplicate through the introducer needles. At autopsy (around 24 h after admission), samples from the same body regions were collected. After mastering of the technical challenges, two authentic cases were analyzed as a proof of concept. Drug concentrations of venlafaxine, O-desmethylvenlafaxine, bromazepam, flupentixol, paroxetine, and lorazepam were determined by LC-MS/MS, and the percentage concentration changes between the two time points were calculated. Concentration changes were observed with both increases and decreases depending on analyte and matrix. While venlafaxine, flupentixol, paroxetine, and lorazepam generally showed changes above 30% and more, O-desmethylvenlafaxine and bromazepam did not undergo extensive PMR. The presented study shows that CT-controlled biopsy collection provides a valuable tool for systematic time-dependent PMR investigation, demanding only minimal sample amount and causing minimal damage to the body.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app