Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Suppression of Drug Resistance in Dengue Virus.

MBio 2015
UNLABELLED: Dengue virus is a major human pathogen responsible for 400 million infections yearly. As with other RNA viruses, daunting challenges to antiviral design exist due to the high error rates of RNA-dependent RNA synthesis. Indeed, treatment of dengue virus infection with a nucleoside analog resulted in the expected genetic selection of resistant viruses in tissue culture and in mice. However, when the function of the oligomeric core protein was inhibited, no detectable selection of drug resistance in tissue culture or in mice was detected, despite the presence of drug-resistant variants in the population. Suppressed selection of drug-resistant virus correlated with cooligomerization of the targeted drug-susceptible and drug-resistant core proteins. The concept of "dominant drug targets," in which inhibition of oligomeric viral assemblages leads to the formation of drug-susceptible chimeras, can therefore be used to prevent the outgrowth of drug resistance during dengue virus infection.

IMPORTANCE: Drug resistance is a major hurdle in the development of effective antivirals, especially those directed at RNA viruses. We have found that one can use the concept of the genetic dominance of defective subunits to "turn cousins into enemies," i.e., to thwart the outgrowth of drug-resistant viral genomes as soon as they are generated. This requires deliberate targeting of larger assemblages, which would otherwise rarely be considered by antiviral researchers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app