Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The stability and controlled release of I-ascorbic acid encapsulated in poly (ethyl-2-cyanoacrylate) nanocapsules prepared by interfacial polymerization of water-in-oil microemulsions.

The L-ascorbic acid (AA) was encapsulated into biodegradable and biocompatible poly(ethyl-2-cyanoacrylate) (PECA) nanocapsules by interfacial polymerization of water-in-oil (W/O) microemulsions. The influences of surfactant concentration, pH value of the dispersed aqueous phase, and W/O ratio on nanocapsule size were discussed. The stability and in vitro release of encapsulated AA were also investigated. The results show that nanocapsules could be obtained under the conditions with low pH value, high fraction of aqueous phase, and appropriate surfactant concentration. The encapsulated AA was protected by nanocapsules from oxidation and presented superior storage stability in aqueous medium than pure AA. Releasing AA from the inner core of nanocapsules could be controlled by adjusting the enzyme hydrolysis extent of the PECA wall.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app