Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Derivation of water quality guidelines for priority pharmaceuticals.

Pharmaceuticals can enter freshwater and affect aquatic ecosystem health. Although toxicity tests have been carried out for the commonly used pharmaceuticals, evidence-based water quality guidelines have not been derived. High-reliability water quality guideline values have been derived for 4 pharmaceuticals-carbamazepine, diclofenac, fluoxetine, and propranolol-in freshwaters using a Burr type III distribution applied to species sensitivity distributions of chronic toxicity data. Data were quality-assured and had to meet acceptability criteria for "chronic" no-observed-effect concentrations or concentrations affecting 10% of species, endpoints of population relevance (namely, effect endpoints based on development, growth, reproduction, and survival). Biomarker response data (e.g., biochemical, histological, or molecular responses) were excluded from the derivation because they are typically not directly relevant to wildlife population-related impacts. The derived guideline values for 95% species protection were 9.2 μg/L, 770 μg/L, 1.6 μg/L, and 14 μg/L for carbamazepine, diclofenac, fluoxetine, and propranolol, respectively. These values are significantly higher than the unknown reliability values derived for the European Commission, Switzerland, or Germany that are based on the application of assessment factors to the most sensitive experimental endpoint (which may include biochemical, histological, or molecular biomarker responses) of a limited data set. The guideline values derived in the present study were not exceeded in recent data for Australian rivers and streams receiving pharmaceutical-containing effluents from wastewater-treatment plants. Environ Toxicol Chem 2016;35:1815-1824. © 2015 SETAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app