JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Repolarization Alternans and Ventricular Arrhythmia in a Repaired Tetralogy of Fallot Animal Model.

BACKGROUND: Ventricular arrhythmia is an important cause of late death in patients with repaired tetralogy of Fallot (rTOF). By using an rTOF canine model, we investigated the role of repolarization alternans and its electrophysiological mechanisms.

METHODS AND RESULTS: Six dogs received right ventricular outflow tract (RVOT) transannular patch, pulmonary valve destruction, and right bundle branch ablation to simulate rTOF. After 1 year, we performed high-resolution dual-voltage and calcium optical mapping to record action potentials and calcium transients on the excised right ventricular outflow tract wedges. Another 6 dogs without operation served as control. The rTOF group was more susceptible to action potential duration alternans (APD-ALT) and spatially discordant APD-ALT than control (threshold for APD-ALT: 516±36 vs 343±36 ms; P=0.017; threshold for discordant APD-ALT: 387±30 vs 310±14 ms; P=0.046). We detected 2 episodes of ventricular tachycardia in the rTOF group, but none in the control. Expressions of Kv4.3 and KChIP2 decreased in the rTOF group. Expression of connexin 43 also decreased in the rTOF group with a corresponding decrease of conduction velocity and might contribute to spatially discordant APD-ALT. We also found distinct electrophysiological features of the RVOT, including biphasic relationship between magnitude of APD-ALT and pacing cycle length, uncoupling of APD-ALT, and calcium transients alternans, and shortened APD, but unchanged, APD restitution in rTOF.

CONCLUSIONS: We demonstrated novel electrophysiological properties of the RVOT. In an rTOF model, the RVOT exhibits increased susceptibility to temporal and spatially discordant APD-ALT, which was not totally dependent on calcium transient alternans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app