JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Duplication of the V3 domain in hepatitis C virus (1b) NS5A protein: Clonal analysis and physicochemical properties related to hepatocellular carcinoma occurrence.

BACKGROUND: Hepatitis C virus non-structural protein 5A is known to play a role in development of hepatocellular carcinoma (HCC) via interactions with host cell pathways.

OBJECTIVES: Hepatitis C virus genotype 1b strains presenting a wide insertion of 31 amino acids in the non-structural protein 5A V3 domain (V3 DI) were studied to determine whether this V3-like additional domain (V3 DII) was associated with HCC occurrence.

STUDY DESIGN: Seventy-four patients' sera were screened for V3 DII presence regarding clinical status.

RESULTS: Three strains with duplicated V3 were detected among patients with progression to HCC (n=28), two strains among patients with liver cirrhosis (Ci, n=27) and none among patients with chronic hepatitis (Chr, n=19). Phylogenetic trees built from V3 DI and V3 DII sequences indicated that the latter clustered separately. In between-group clonal analysis, V3 DII sequences from the HCC group were found to be more distant from HCV-J than V3 DI sequences (p<0.0001). Between-group comparisons showed significant differences in genetic distances from HCV-J, in HCC V3 DI and HCC V3 DII compared to Ci V3 DI and Ci V3 DII sequences (p<0.0001). HCC V3 DII domain and its junction with V3 DI exhibited higher Shannon entropy values and enrichment in disorder-promoting residues.

CONCLUSIONS: Taken together, our results suggest that V3 DII evolution may differ in strains associated with HCC occurrence. The presence of an intrinsically "disordered" V3 duplicate may alter the NS5A protein network. Further investigations are necessary to elucidate the potential impact of V3 duplication in the context of carcinogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app