Add like
Add dislike
Add to saved papers

Current inversions induced by resonant coupling to surface waves in a nanosized water pump.

We conducted a molecular dynamics simulation to investigate current inversions in a nanosized water pump based on a single-walled carbon nanotube powered by mechanical vibration. It was found that the water current depended sensitively on the frequency of mechanical vibration. Especially in the resonance region, the nanoscale pump underwent reversals of the water current. This phenomenon was attributed to the dynamics competition of the water molecules in the two sections (the left and right parts) divided by the vibrating atom and the differences in phase and decay between the two mechanical waves generated by mechanical vibration and propagating in opposite directions toward the two ends of the carbon nanotube. Our findings provide an insight into water transportation through nanosized pumps and have potential in the design of high-flux nanofluidic systems and nanoscale energy converters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app